September 13, 2016 - algorithm

398. Random Pick Index

Given an array of integers with possible duplicates, randomly output the index of a given target number. You can assume that the given target number must exist in the array.

Note: The array size can be very large. Solution that uses too much extra space will not pass the judge.

Example:

int[] nums = new int[] {1,2,3,3,3};
Solution solution = new Solution(nums);

// pick(3) should return either index 2, 3, or 4 randomly. Each index should have equal probability of returning.
solution.pick(3);

// pick(1) should return 0. Since in the array only nums[0] is equal to 1.
solution.pick(1);

1. Analyse

I don’t know whether a hashmap can solve this problem. Let’s try.

2. MLE Code

class Solution {
public:
	unordered_map<int, vector<int>> mp;

    Solution(vector<int> nums) {
		mp.clear();
		for( int i=0; i<nums.size(); i++ )
			mp[nums[i]].push_back(i);
    }
    
    int pick(int target) {
		int size = mp[target].size();
		return mp[target][rand()%size];
    }
};

/**
 * Your Solution object will be instantiated and called as such:
 * Solution obj = new Solution(nums);
 * int param_1 = obj.pick(target);
 */

WTF. I cannot believe my solution is MLE. Using less memory means using more time.

3. AC Code

class Solution {
public:
	vector<int> vec;
    Solution(vector<int> nums) {
		vec = nums;
    }
    
    int pick(int target) {
		int count = 0;
		int ans;
		for( int i=0; i<vec.size(); i++ )
			if( (vec[i] == target) && (rand()%++count == 0) )
				ans = i;
		return ans;
    }
};

Reference

  1. 398. Random Pick Index. reboot329.