396. Rotate Function
Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a “rotation function” F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + … + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), …, F(n-1).
Note: n is guaranteed to be less than 10^5.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
1. Analyse
OK, when I see the n
can be 10^5, I guess I just cannot solve it directly, but why not try.
2. TLE Code
class Solution {
public:
int maxRotateFunction(vector<int>& A) {
int maxRotate = INT_MIN;
for(int i=0; i<A.size(); i++){
int sum = 0;
for(int j=0; j<A.size(); j++)
sum += A[j]*j;
maxRotate = max( maxRotate, sum );
A.push_back(A.front());
A.erase(A.begin());
}
return ( A.size() ? maxRotate : 0 );
}
};
Opps, it really TLE. Now we analyse the problem again. F(1) - F(0) = Sum_of_Array - (n+1) * last_item_of_F(0).
F(k) = F(k-1) + Sum_of_Array - (n+1) * Array[n-k]
3. AC Code
class Solution {
public:
int maxRotateFunction(vector<int>& A) {
int F = 0, Sum = 0;
for( int i=0; i<A.size(); i++ ){
F += A[i]*i;
Sum += A[i];
}
int maxRotate = max( F, INT_MIN );
for( int i=1; i<A.size(); i++ ){
F = F + Sum - A.size() * A[A.size()-i];
maxRotate = max( maxRotate, F );
}
return ( A.size() ? maxRotate : 0 );
}
};