September 12, 2016 - algorithm

396. Rotate Function

Given an array of integers A and let n to be its length.

Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a “rotation function” F on A as follow:

F(k) = 0 * Bk[0] + 1 * Bk[1] + … + (n-1) * Bk[n-1].

Calculate the maximum value of F(0), F(1), …, F(n-1).

Note: n is guaranteed to be less than 10^5.

Example:

A = [4, 3, 2, 6]

F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26

So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.

1. Analyse

OK, when I see the n can be 10^5, I guess I just cannot solve it directly, but why not try.

2. TLE Code

class Solution {
	public:
    int maxRotateFunction(vector<int>& A) {
        int maxRotate = INT_MIN;
        for(int i=0; i<A.size(); i++){
            int sum = 0;
            for(int j=0; j<A.size(); j++)
                sum += A[j]*j;
            maxRotate = max( maxRotate, sum );
            A.push_back(A.front());
            A.erase(A.begin());
        }
        return ( A.size() ? maxRotate : 0 );
    }
};

Opps, it really TLE. Now we analyse the problem again. F(1) - F(0) = Sum_of_Array - (n+1) * last_item_of_F(0).

F(k) = F(k-1) + Sum_of_Array - (n+1) * Array[n-k]

3. AC Code

class Solution {
public:
    int maxRotateFunction(vector<int>& A) {
		int F = 0, Sum = 0;
		for( int i=0; i<A.size(); i++ ){
			F += A[i]*i;
			Sum += A[i];
		}
		int maxRotate = max( F, INT_MIN );

		for( int i=1; i<A.size(); i++ ){
			F = F + Sum - A.size() * A[A.size()-i];
			maxRotate = max( maxRotate, F );
		}
		return ( A.size() ? maxRotate : 0 );
    }
};